Interrogation écrite 2

■ Durée: 110 minutes

Les calculatrices ne sont pas autorisées

■ Nom:

Prénom :

Exercice 1 Vrai ou faux?

Répondre par VRAI ou FAUX à chacune des affirmations suivantes et justifier votre réponse.

Toute réponse non justifiée ne sera pas prise en compte dans la notation.

Toutes les questions de cet exercice sont indépendantes.

1. Soit (u_n) la suite définie pour tout entier naturel n par $u_n = (-2n + 5\sqrt{2})(1 + 3n^3)$.

1 point

Affirmation 1: $\lim_{n\to+\infty} u_n = +\infty$.

2. Soit (u_n) une suite vérifiant, pour tout $n \in \mathbb{N}^*$,

1 point

$$\frac{2n+1}{3n} < u_n \le 1 + \left(\frac{1}{3}\right)^n.$$

Affirmation 2: $\frac{2}{3} \le \lim_{n \to +\infty} u_n \le 1$.

3. On pose $S = 2^3 + 2^4 + 2^5 + \dots + 2^{33}$

1 point

Affirmation 3 : la somme S est égale à $8 \times (2^{30} - 1)$.

4. On considère la suite (u_n) définie pour tout entier naturel non nul n par $u_n = \frac{25 + (-1)^n}{n}$.

1 point

Affirmation 4: (u_n) est une suite divergente.

5. Soit (u_n) la suite définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{1 + u_n} \text{ pour tout } n \in \mathbb{N}. \end{cases}$

On admet que, pour tout entier naturel n, $u_n > 0$.

On considère la suite (v_n) définie par $v_n = \frac{k}{u_n}$ où k est un nombre réel strictement positif.

1 point

Affirmation 5: (v_n) est une suite arithmétique strictement croissante.

Exercice 2 **Problème**

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 2, \\ u_{n+1} = \frac{3u_n + 2}{2u_n + 3} & \text{pour tout } n \in \mathbb{N}. \end{cases}$$

1. (a) Calculer u_1 et u_2 .

1 point

(b) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n > 1$.

3 points

(c) Montrer que, pour tout $n \in \mathbb{N}$,

3 points

$$u_{n+1} - u_n = \frac{-2(u_n - 1)(u_n + 1)}{2u_n + 3}.$$

(d) Que peut-on dire des variations de (u_n) ?

2 points

2. On définit la suite $(v_n)_{n\geq 0}$ par

$$v_n = \frac{u_n - 1}{u_n + 1}.$$

(a) Montrer que la suite (v_n) est géométrique.

2 points

(b) Exprimer v_n en fonction de l'entier naturel n.

1 point

(c) Montrer que, pour tout $n \in \mathbb{N}$,

2 points

$$u_n = \frac{1 + \frac{1}{3} \times \left(\frac{1}{5}\right)^n}{1 - \frac{1}{3} \times \left(\frac{1}{5}\right)^n}.$$

(d) En déduire la limite de (u_n) .

1 point

- 3. Question subsidiaire.
 - Montrer que

2 points

$$\lim_{n \to +\infty} [\nu_0 + \nu_1 + \nu_2 + \dots + \nu_{n-1}] = \frac{5}{12}.$$