Utiliser le calcul littéral

Les objectifs du chapitre

Contenu

- Développement d'expressions littérales
- Factorisation d'expressions littérales
- Utilisation des trois identités remarquables
- Résolution d'équations
- Utilisation de la racine carrée

Capacités attendues

- Identification de la forme la plus adéquate (développée, factorisée) d'une expression en vue de la résolution d'un problème donné
- Mise en équations en utilisant le théorème de Pythagore ou le théorème de Thalès

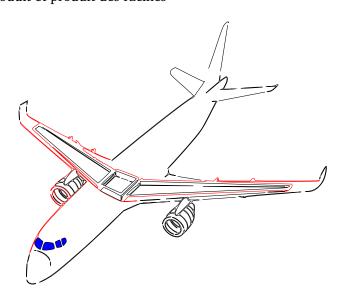
Démonstrations

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

■ Racine carrée d'un produit et produit des racines



I Le cours

1. Transformation d'expressions algébriques

Définition 1 : développer - factoriser

- ➤ **Développer** une expression littérale, c'est transformer un produit de facteurs en une somme de termes.
- ➤ **Factoriser** une expression littérale, c'est transformer une somme de termes en un produit de facteurs.

Propriété 1 : distributivité

Pour tous nombres réels a, b, c, d et k, on a

- **distributivité simple** : k(a+b) = ka + kb
- **distributivité double** : (a + b)(c + d) = ac + ad + bc + bd

Exemples

 \triangleright On développe l'expression 3 (5x – 7) en utilisant la distributivité simple, ce qui donne

$$3(5x-7) = 3 \times 5x - 3 \times 7 = 15x - 21.$$

 \blacktriangleright On factorise l'expression 3y + 18 en remarquant que 3 est un facteur commun. Ainsi,

$$3y + 18 = 3 \times y + 3 \times 6 = 3(y + 6)$$
.

Méthode 1 : factoriser au maximum l'expression $-7x^2y + 28xy^3$

On a

$$-7x^{2}y + 28xy^{3} = -7x \times x \times y + 7 \times 4 \times x \times y \times y^{2} = 7xy(-x + 4y^{2}).$$

Méthode 2 : transformer une équation du second degré en une équation produit nul

- **1** Développer l'expression (x+5)(x-3).
- **2** Résoudre dans \mathbb{R} l'équation du second degré $x^2 = 15 2x$.

Corrigé

- **1** Par double distributivité, on a $(x+5)(x-3) = x^2 3x + 5x 15 = x^2 + 2x 15$.
- 2 Soit x un nombre réel. Par équivalences successives, on a

$$x^2 = 15 - 2x$$
 \iff $x^2 + 2x - 15 = 0$
 \Leftrightarrow $(x+5)(x-3) = 0$ (d'après la question 1)
 \Leftrightarrow $x+5=0$ ou $x-3=0$ (équation produit nul)
 \Leftrightarrow $x=-5$ ou $x=3$

Il en résulte que l'ensemble des solutions sur \mathbb{R} , noté S, de l'équation $x^2 = 15 - 2x$ est

$$S = \{-5; 3\}$$

2. Identités remarquables

Propriété 2 : identités remarquables

Pour tous nombres réels a et b, on a

0 I.R.1

$$(a+b)^2 = a^2 + 2ab + b^2$$

② I.R.2

$$(a-b)^2 = a^2 - 2ab + b^2$$

9 I.R.3

$$(a+b)(a-b) = a^2 - b^2$$

Démonstration

Par définition du carré et en utilisant la distributivité, on a pour tous réels a et b

0 I.R.1

$$(a+b)^2 = (a+b)(a+b) = a \times a + a \times b + b \times a + b \times b = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2.$$

② I.R.2

$$(a-b)^2 = (a-b)(a-b) = a \times a - a \times b - b \times a + b \times b = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2.$$

6 I.R.3

$$(a+b)(a-b) = a \times a - a \times b + b \times a - b \times b = a^2 \underbrace{-ab + ba}_{=0} - b^2 = a^2 - b^2.$$

Exemples

➤ On développe l'expression $(x + 3)^2$ en utilisant la première identité remarquable (I.R.1). Avec a = x et b = 3, on obtient

$$(x+3)^2 = x^2 + 2 \times x \times 3 + 3^2 = x^2 + 6x + 9.$$

➤ On développe l'expression $(2x-5)^2$ en utilisant la deuxième identité remarquable (I.R.2). En posant a=2x et b=5, on obtient

$$(2x-5)^2 = (2x)^2 - 2 \times 2x \times 5 + 5^2 = 4x^2 - 20x + 25.$$

 \triangle Ici $a^2 = (2x)^2 = 4x^2$. Écrire $a^2 = 2x^2$ sans les parenthèses est une erreur à éviter.

▶ Pour factoriser $16y^2 - 24y + 9$, on remarque que cette expression est composée de trois termes et d'un signe moins. On pense donc à appliquer la deuxième identité remarquable (I.R.2). On obtient

$$16y^2 - 24y + 9 = (4y)^2 - 2 \times 4y \times 3 + 3^2 = (4y - 3)^2.$$

▶ Pour factoriser <u>au maximum</u> $9x^2 - 81$, on remarque que cette expression ne contient que deux termes. On pense donc à appliquer la dernière identité remarquable (I.R.3), ce qui donne

$$9x^2 - 81 = (3x)^2 - 9^2 = (3x + 9)(3x - 9) = 3(x + 3) \times 3(x - 3) = 9(x + 3)(x - 3).$$

Écrire $9x^2 - 81 = 9(x^2 - 9)$ ne répond pas à la question car il s'agit ici de factoriser au maximum.

Méthode 3 : développer en utilisant les identités remarquables

x désigne un nombre réel. Développer les expressions suivantes en précisant l'identité remarquable utilisée et en donnant les valeurs de a et de b.

- **1** $(3x+4)^2$
- **2** $(5\sqrt{2}+x)(5\sqrt{2}-x)$
- **8** $(\sqrt{3}x-1)^2$

Corrigé

① On utilise I.R.1 avec a = 3x et b = 4, ce qui donne

$$(3x+4)^2 = (3x)^2 + 2 \times 3x \times 4 + 4^2 = 9x^2 + 24x + 16.$$

2 On utilise I.R.3 avec $a = 5\sqrt{2}$ et b = x, ce qui donne

$$(5\sqrt{2}+x)(5\sqrt{2}-x)=(5\sqrt{2})^2-x^2=5^2\times\sqrt{2}^2-x^2=25\times2-x^2=50-x^2.$$

3 On utilise I.R.2 avec $a = \sqrt{3}x$ et b = 1, ce qui donne

$$(\sqrt{3}x - 1)^2 = (\sqrt{3}x)^2 - 2 \times \sqrt{3}x \times 1 + 1^2 = 3x^2 - 2\sqrt{3}x + 1.$$

La troisième identité remarquable permet de ramener certaines équations du second degré à des équations produit nul comme le montre la méthode ci-dessous.

Méthode 4 : résoudre une équation du second degré

Résoudre dans \mathbb{R} l'équation $25x^2 = 16$.

Corrigé

Soit x un nombre réel. On a

$$25x^{2} = 16 \qquad \Leftrightarrow \qquad 25x^{2} - 16 = 0$$

$$\Leftrightarrow \qquad (5x)^{2} - 4^{2} = 0$$

$$\Leftrightarrow \qquad (5x + 4)(5x - 4) = 0 \qquad \text{(utilisation de I.R.3)}$$

$$\Leftrightarrow \qquad 5x + 4 = 0 \qquad \text{ou} \qquad 5x - 4 = 0 \qquad \text{(équation produit nul)}$$

$$\Leftrightarrow \qquad x = \frac{-4}{5} \qquad \text{ou} \qquad x = \frac{4}{5}.$$

Ainsi l'ensemble des solutions, noté S, de l'équation $25x^2 = 16$ est $S = \left\{ \frac{-4}{5} ; \frac{4}{5} \right\}$.

3. Calculer avec des racines carrées

Définition 2 : racine carrée

Soit *a* un nombre réel positif.

On appelle **racine carrée** de *a*, l'**unique** nombre réel positif dont le carré vaut *a*.

Quelques exemples				
$\sqrt{2} \approx 1,41$	$\sqrt{3} \approx 1,73$	$\sqrt{100} = 10$	$\sqrt{121} = 11$	
$\sqrt{144} = 12$	$\sqrt{169} = 13$	$\sqrt{225} = 15$	$\sqrt{289} = 17$	

Propriété 3 : propriétés algébriques de la racine carrée

Soient a et b deux nombres réels **positifs**. On a

0

$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

0

$$\sqrt{a}^2 = a$$

3 Si de plus $b \neq 0$, alors

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

4

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

Démonstration

a et b sont des nombres positifs.

• \sqrt{a} et \sqrt{b} sont des nombres positifs. Donc le produit $\sqrt{a} \times \sqrt{b}$ est également positif. De plus son carré est $\left(\sqrt{a} \times \sqrt{b}\right)^2 = \sqrt{a}^2 \times \sqrt{b}^2 = ab$. Or, il existe un unique nombre positif dont la carré est ab, qui est par définition \sqrt{ab} . Par conséquent

$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
.

- ② D'après ce qui précède, on a $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$. En prenant b = a, il vient $\sqrt{a^2} = \sqrt{a} \times \sqrt{a} = \sqrt{a^2} = a$.
- **9** Pour $b \neq 0$, \sqrt{a} et \sqrt{b} sont des nombres positifs (\sqrt{b} est strictement positif). Donc le quotient $\frac{\sqrt{a}}{\sqrt{b}}$ est bien défini et est positif. De plus son carré est

$$\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2 = \frac{\sqrt{a^2}}{\sqrt{b^2}} = \frac{a}{b}.$$

Or, il existe un unique nombre positif dont la carré est $\frac{a}{b}$, qui est par définition $\sqrt{\frac{a}{b}}$. Par conséquent

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}.$$

O'une part

$$\left(\sqrt{a} + \sqrt{b}\right)^2 = \sqrt{a^2} + 2\sqrt{a} \times \sqrt{b} + \sqrt{b^2} = a + 2\sqrt{ab} + b.$$

D'autre part

$$\sqrt{a+b}^2 = a+b.$$

De plus $2\sqrt{ab} \ge 0$ car $a \ge 0$ et $b \ge 0$. Il en résulte que $\sqrt{a+b}^2 \le \left(\sqrt{a}+\sqrt{b}\right)^2$. Or deux nombres positifs sont dans le même ordre que leurs carrés. Il s'ensuit que $\sqrt{a+b} \le \sqrt{a}+\sqrt{b}$.

Exemples

>

$$\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$$

>

$$\sqrt{\frac{25}{81}} = \frac{\sqrt{25}}{\sqrt{81}} = \frac{5}{9}$$

>

$$\sqrt{5} = \sqrt{2+3} \le \sqrt{2} + \sqrt{3}$$

Dans ce cas l'inégalité obtenue est stricte. En effet

$$\sqrt{2+3} \approx 2,24$$
 et $\sqrt{2} + \sqrt{3} \approx 3,15$.

Méthode 5 : calculs avec des radicaux

0
$$(-\sqrt{7})^2$$

6
$$(4\sqrt{3})^2$$

Corrigé

1 On a
$$(-\sqrt{7})^2 = \sqrt{7}^2 = 7$$
.

On a

$$-\left(\sqrt{\frac{3}{16}}\right)^2 = -\sqrt{\frac{3}{16}}^2 = -\frac{3}{16}.$$

3 On a $(4\sqrt{3})^2 = 4^2 \times \sqrt{3}^2 = 16 \times 3 = 48$.

Méthode 6 : utilisation de la quantité conjuguée

Écrire chacun des nombres suivants sous la forme d'une fraction dont le dénominateur est un entier naturel non nul.

1
$$A = \frac{1}{\sqrt{7}}$$

2 B=
$$\frac{\sqrt{5}}{\sqrt{7}}$$

8 C=
$$\frac{1}{\sqrt{5}-\sqrt{3}}$$

Corrigé

① On a

$$A = \frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{1 \times \sqrt{7}}{\sqrt{7}^2} = \frac{\sqrt{7}}{7}.$$

On a

$$B = \frac{\sqrt{5}}{\sqrt{7}} = \frac{\sqrt{5}}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{5} \times \sqrt{7}}{\sqrt{7}^2} = \frac{\sqrt{35}}{7}.$$

On a

$$\mathsf{C} = \frac{1}{\sqrt{5} - \sqrt{3}} \times \frac{\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}}}{\frac{1}{\sqrt{5} + \sqrt{3}}} = \frac{1 \times \left(\sqrt{5} + \sqrt{3}\right)}{\left(\sqrt{5} - \sqrt{3}\right)\left(\sqrt{5} + \sqrt{3}\right)} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5}^2 - \sqrt{3}^2} = \frac{\sqrt{5} + \sqrt{3}}{5 - 3} = \frac{\sqrt{5} + \sqrt{3}}{2}.$$

II Les exercices

Exercice 1 Développement

x désigne un nombre réel. Développer puis réduire chacune des expressions suivantes.

1.
$$(3x+1)^2$$

2.
$$(4x-5)^2$$

3.
$$(5x+11)(5x-11)$$

4.
$$(\sqrt{3}x+5)(\sqrt{3}x-5)$$

5.
$$-(-2x+3)^2-5(1-4x)$$

6.
$$2(\sqrt{x}-3)^2$$
 où $x \ge 0$

Exercice 2 Factorisation

x désigne un nombre réel. Factoriser au maximum chacune des expressions suivantes.

1.
$$-5x^2 + x$$

2.
$$9x^2 - 16$$

3.
$$x^2 - 4x + 4$$

4.
$$3x^2 - 1$$

5.
$$9x^2 - 12x + 4$$

6.
$$36x^2 - 12xy + y^2$$

Exercice 3 Résolution d'équations

Résoudre dans \mathbb{R} les équations suivantes.

1.
$$x + 7 = 13$$

2.
$$-5x = 6$$

3.
$$\frac{2}{3}x = 11$$

4.
$$2(2x+3)=7$$

5.
$$3x-4=2x+8$$

6.
$$6x - 4 = 2(3x + 2)$$

7.
$$x^2 - 2x + 1 = 0$$

8.
$$x^2 = 3x$$

9.
$$x^2 - 5 = 0$$

10.
$$2(x-5)^2 = 50$$

Exercice 4 Forme la plus adaptée

On considère l'expression $A(x) = (x+5)^2 - 4$ où x désigne un nombre réel.

- **1.** Développer A(x).
- **2.** Factoriser A(x).
- **3.** Utiliser la forme la plus adaptée pour calculer <u>mentalement</u> A(0), A(-7) et A(-3).
- 4. Résoudre les équations suivantes.

(a)
$$A(x) = 0$$
.

(b)
$$A(x) = 21$$
.

Exercice 5 Somme des carrés de trois entiers naturels consécutifs

1. Montrer que pour tout nombre réel x, on a l'égalité suivante

$$3x^2 + 2 = (x-1)^2 + x^2 + (x+1)^2$$

2. Déterminer trois nombres entiers naturels consécutifs dont la somme des carrés est égale à 7 805.

Exercice 6 Somme d'un nombre et de son carré

On considère l'expression $A(x) = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4}$.

- **1.** Factoriser A(x).
- **2.** Déterminer le, ou les nombres <u>entiers</u> vérifiant la propriété suivante :

"la somme d'un nombre et de son carré est égale à 42".

Exercice 7 Méthode d'Al-Khwârizmî

L'objectif de cet exercice est d'étudier une méthode ingénieuse de résolution de certaines équations du second degré à une inconnue due au mathématicien Al-Khwârizmî.

Al-Khwârizmî

Membre de la Maison de la sagesse de Bagdad, Al-Khwârizmî (780-850), est un mathématicien, géographe, et astronome Persan. Ses écrits, rédigés en langue arabe, puis traduits en latin à partir du XII^e siècle, ont permis l'introduction de l'algèbre en Europe.

Son nom latinisé est à l'origine du mot algorithme et le titre de l'un de ses ouvrages (Abrégé du calcul par la restauration et la comparaison) est à l'origine du mot algèbre. L'utilisation des chiffres arabes et leur diffusion dans le Moyen-Orient et en Europe serait dues à un autre de ses livres nommé Traité du système de numération des Indiens.

On considère l'équation du second degré suivante

(E):
$$x^2 + 10x = 39$$

FIGURE 2.1 – Manuscrit datant de 1342 dans lequel une équation est résolue par la méthode d'Al-Khwârizmî.

5 <i>x</i>	x^2
	5 <i>x</i>

La méthode d'Al-Khwârizmî, de nature géométrique, consiste à découper un carré en plusieurs parties comme indiqué sur la figure ci-dessus.

- 1. Déterminer l'aire du carré vert.
- **2.** En déduire l'aire du grand carré.
- **3.** Montrer que l'équation de départ (E) devient $(x + 5)^2 = 64$.
- **4.** En déduire la solution positive de l'équation (E).
- **5.** En utilisant la méthode d'Al-Khwârizmî, résoudre l'équation $x^2 + 40x 329 = 0$.

Exercice 8 Côté d'un carré

Déterminer le côté d'un carré sachant que si on l'augmente de 3 m, l'aire du carré augmente de 24 m².

Exercice 9 Aire 1

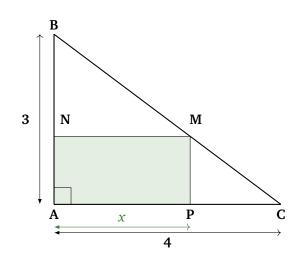
On considère le triangle ABC rectangle en A ci-contre, tel que AB= 3 et AC= 4.

Soit *P* un point du segment [AC].

On construit le rectangle ANMP et on pose AP= x, avec $0 \le x \le 4$.

- **1.** Donner une expression de MP en fonction de x.
- 2. En déduire que l'aire du rectangle ANMP est

$$\mathcal{A}(x) = \frac{3}{4}(4x - x^2)$$



Exercice 10 Aire 2

Soit ABCD un carré de côté 10 et soit M un point appartenant au segment [AB].

On pose AM = x et on note E le point d'intersection des segments [DM] et [AC].

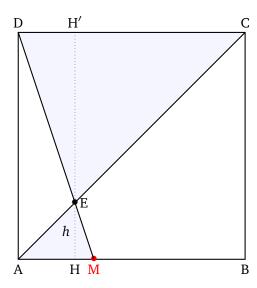
 $\mathcal{A}(x)$ représente l'aire de la figure formée par les deux triangles DEC et EAM.

La perpendiculaire à la droite (AB) passant par E coupe le segment [AB] en H et le segment [CD] en H'. On pose h=EH.

$$\frac{h}{10-h} = \frac{x}{10}$$

- 2. En déduire que $h = \frac{10x}{x+10}$
- **3.** Prouver que

$$\mathscr{A}(x) = \frac{5x^2 + 500}{x + 10}$$



Exercice 11 Aire 3

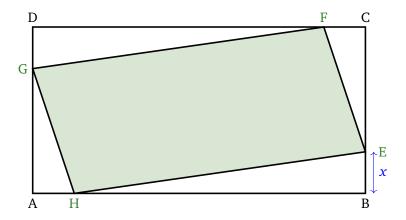
Soit ABCD un rectangle tel que AB= 4 et BC=2.

Soit E un point du segment [BC] tel que BE= x avec $0 \le x \le 2$.

On considère ensuite les points F, G et H tels que

$$BE = CF = DG = AH$$
.

L'aire du quadrilatère EFGH sera notée $\mathcal{A}(x)$.

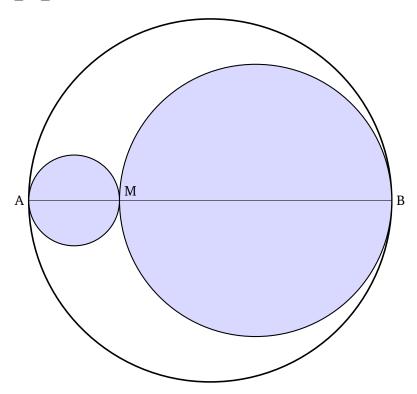


Montrer que pour tout x appartenant à [0; 2], on a

$$\mathcal{A}(x) = 2(x^2 - 3x + 4).$$

Exercice 12 Aire 4

Soit \mathscr{C} un cercle de diamètre [AB] avec AB= 4. Soit M un point appartenant au segment [AB]. On pose AM= x avec $0 \le x \le 4$.



Montrer que la somme des aires des disques de diamètre [AM] et [MB] peut s'écrire sous la forme suivante

$$\mathcal{A}(x) = \frac{\pi}{2} \left(x^2 - 4x + 8 \right).$$

Exercice 13 Quelques identités

Soient x et y deux nombres réels. Montrer les identités suivantes.

1.
$$x^2 + y^2 = \frac{(x+y)^2 + (x-y)^2}{2}$$

2.
$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

3.
$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

Exercice 14 Une démonstration à compléter

1. Compléter toutes les étapes de la démonstration ci-dessous.

a and b sont deux nombres réels tels que Multiplier chaque membre de l'égalité par a Soustraire b^2 de chaque membre Factoriser les deux membres de l'égalité Diviser chaque membre de l'égalité par (a - b)Comme a = b, on obtient l'égalité Diviser les deux membres de l'égalité par b

a = b

2. Commenter le résultat obtenu.

Exercice 15 Utilisation de la racine carrée

Écrire chacun des nombres suivants sous la forme $a\sqrt{b}$ où a est un nombre entier et b l'entier naturel le plus petit possible.

1.
$$\sqrt{12}$$

5.
$$\sqrt{720}$$

9.
$$\sqrt{1575}$$

2.
$$\sqrt{360}$$

6.
$$\sqrt{18}$$

10.
$$\sqrt{147}$$

3.
$$\sqrt{200}$$

7.
$$\sqrt{40}$$

11.
$$\sqrt{1800}$$

4.
$$\sqrt{124}$$

8.
$$\sqrt{225}$$

12.
$$\sqrt{22050}$$

Exercice 16 Transformation d'écritures

Écrire chacun des nombres suivants sous la forme d'une fraction dont le dénominateur est un entier naturel.

1.
$$\frac{1}{\sqrt{5}}$$

3.
$$\frac{\sqrt{3}}{\sqrt{7}}$$

5.
$$\frac{1}{\sqrt{7}-\sqrt{6}}$$

2.
$$\frac{5}{\sqrt{7}}$$

4.
$$\frac{1}{\sqrt{2}-1}$$

6.
$$\frac{\sqrt{5}-2}{\sqrt{5}+2}$$

Exercice 17 **Une expression**

On considère l'expression suivante

$$A = \sqrt{450} + 3\sqrt{2} - \sqrt{32}.$$

- 1. Écrire l'expression A sous la forme $a\sqrt{b}$ où a et b sont des entiers naturels.
- 2. En déduire une expression de $\frac{1}{A}$ avec un dénominateur entier naturel.

Exercice 18 Simplification d'expressions avec radicaux

Écrire le plus simplement possible chacune des expressions suivantes.

1.
$$A = \frac{\sqrt{3+\sqrt{3}} \times \sqrt{3-\sqrt{3}}}{\sqrt{6}}$$
 2. $B = \frac{2(\sqrt{5}-\sqrt{2})}{\sqrt{45}-\sqrt{18}}$

2.
$$B = \frac{2(\sqrt{5} - \sqrt{2})}{\sqrt{45} - \sqrt{18}}$$

3.
$$C = \frac{3 + \sqrt{5}}{3 - \sqrt{5}}$$

Exercice 19 Développer des expressions contenant des radicaux

Développer, puis réduire au maximum, chacune des expressions suivantes.

1.
$$A = (2 - \sqrt{3})^2$$

3.
$$C = (3 + \sqrt{2})(2 - \sqrt{5})$$

2.
$$B = (5 + \sqrt{7})^2$$

4.
$$D = (2 + 3\sqrt{5})(2 - 3\sqrt{5})$$

Exercice 20 Quelques expressions

On pose $x = 1 - \sqrt{5}$ et $y = 1 + \sqrt{3}$.

1. Calculer
$$x^2$$
 et y^2 .

2. On pose
$$z = \frac{1 - \sqrt{5}}{6 - 2\sqrt{5}}$$
.

Simplifier l'expression de z, puis rendre son dénominateur rationnel.

Exercice 21 Les puissances

Simplifier les nombres suivants.

1.
$$A = 5^2 \times 5^{-6} \times 5^{10} \times 5^7$$

3.
$$C = \frac{9^2 \times 27^2 \times 75}{5^2 \times 3^4}$$

$$\mathbf{2.} \quad \mathbf{B} = \frac{2^5 \times 2^{-7}}{2^{-9}}$$

4.
$$D = 81^3 \times (3^{-2})^{-4} \times \frac{1}{9}$$

Exercice 22 Simplifications

Simplifier chacune des expressions suivantes.

1.
$$A = \sqrt{72}$$

5.
$$E = 5(1+\sqrt{5})(1-\sqrt{5})$$

2.
$$B = \frac{5}{\sqrt{8}}$$

6.
$$F = 5\sqrt{32} - \sqrt{242} - (-\sqrt{72})$$

3.
$$C = \sqrt{64 + 36}$$

7.
$$G = \frac{3 - \sqrt{2}}{3 + \sqrt{2}}$$

4.
$$D = \frac{\sqrt{98}}{\sqrt{242}} \times \sqrt{\frac{81}{25}}$$

8.
$$H = \frac{1}{\sqrt{8} - \sqrt{6}}$$

Exercice 23 Nombre entier

On considère le nombre

$$A = \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1}.$$

Montrer que A=2.

Exercice 24 Vrai ou Faux?

- 1. L'équation $x^2 = 7$ a pour unique solution réelle $x = \sqrt{7}$.
- **2.** $(\sqrt{3} + \sqrt{5})^2 = \sqrt{3}^2 + \sqrt{5}^2 = 3 + 5 = 8.$
- 3. $\sqrt{64+36}=8+6=14$.
- 4. $\sqrt{128} 2\sqrt{32} + 3\sqrt{2} = 3\sqrt{2}$.
- 5. Pour tout nombre réel x, $(3x \sqrt{5})^2 = 3x^2 6\sqrt{5}x + 5$.