Manipuler les nombres réels

I Le cours

1. Ensembles de nombres

Définition 1 : ensemble de nombres

Un **ensemble de nombres** est l'un des ensembles classiques construits à partir de l'ensemble des entiers naturels et munis d'opérations arithmétiques.

Exemples

- \blacktriangleright L'ensemble des **nombres entiers naturels** $\mathbb{N} = \{0 \; ; \; 1 \; ; \; 2 \; ; \; 3 \; ; \; 4 \; ; \; 5 \; ; \; \cdots \}.$
- ➤ L'ensemble des **nombres entiers relatifs** $\mathbb{Z} = \{\cdots; -4; -3; -2; -1; 0; 1; 2; 3; 4; \cdots\}$. Nicolas Bourbaki ^a popularise l'usage de la lettre \mathbb{Z} , initiale de l'allemand *Zahlen* (nombres).
- ➤ L'ensemble des **nombres décimaux** D.

L'écriture décimale de ces nombres ne comporte qu'un nombre fini de chiffres après la virgule.

Un nombre décimal s'écrit aussi sous la forme $\frac{a}{10^n}$ où a est un entier relatif et n un entier naturel.

$$0,33 = \frac{33}{100} = \frac{33}{10^2} \in \mathbb{D}$$
, cependant $\frac{1}{3} \notin \mathbb{D}$.

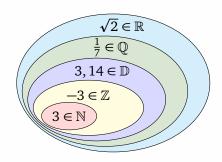
➤ L'ensemble des **nombres rationnels** ℚ, baptisé ainsi par le mathématicien Peano en 1895 d'après l'initiale du mot italien *Quoziente*.

Un nombre rationnel peut s'exprimer sous la forme d'une fraction irréductible $\frac{p}{q}$, où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

- $\frac{1}{3} \in \mathbb{Q}$, cependant $\sqrt{2}$ et π ne sont pas rationnels. On parle de nombres irrationnels.
- \triangleright L'ensemble des **nombres réels** \mathbb{R} .

Un réel est un nombre qui peut être représenté par une partie entière munie d'un signe positif ou négatif, et une liste finie ou infinie de décimales. \mathbb{R} contient les nombres rationnels et irrationnels.

 $\mathbb{N} \subset \mathbb{Z}$ se lit \mathbb{N} est inclus dans \mathbb{Z} .



a. mathématicien imaginaire, sous le nom duquel un groupe de mathématiciens francophones, formé en 1935, a commencé à écrire et à éditer des textes mathématiques. L'objectif premier était la rédaction d'un traité d'analyse.

Propriété $1: \frac{1}{3} \notin \mathbb{D}$

 $\frac{1}{3}$ n'est pas un nombre décimal.

Démonstration (exigible)

On procède par l'absurde.

On suppose que $\frac{1}{3} \in \mathbb{D}$. Il existe donc deux entiers naturels a et n tels que $\frac{1}{3} = \frac{a}{10^n}$, ou encore $10^n = 3a$. Cela voudrait dire que 10^n est un multiple de 3.

Or, la somme des chiffres de 10^n est égale à 1, quel que soit l'entier naturel n.

Donc, d'après le critère de divisibilité par 3, 10^n n'est pas un multiple de 3. On obtient une **contradiction**.

Ainsi notre hypothèse de départ est fausse et on conclut que $\frac{1}{3} \notin \mathbb{D}$.

Propriété 2 : $\sqrt{2} \notin \mathbb{Q}$

 $\sqrt{2}$ n'est pas un nombre rationnel.

Démonstration (exigible)

On procède par l'absurde.

Supposons que $\sqrt{2} \in \mathbb{Q}$. Il existe donc $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$ (où $\frac{p}{q}$ est une fraction irréductible).

En élevant au carré, on obtient $\left(\sqrt{2}\right)^2 = \left(\frac{p}{q}\right)^2$. Ce qui donne $2 = \frac{p^2}{q^2}$, ou encore $p^2 = 2q^2$.

Cela voudrait dire que p^2 est pair. Or, le carré d'un entier impair est impair (voir exercice 3).

Ainsi p ne peut pas être impair, il est donc pair. On en déduit qu'il existe un entier k tel que p = 2k.

En remplaçant p par 2k dans l'égalité $p^2 = 2q^2$, on obtient $(2k)^2 = 2q^2$, ou encore $q^2 = 2k^2$.

Il en résulte que q^2 est pair. Par conséquent q est pair.

On aurait donc p et q deux nombres pairs et $\frac{p}{q}$ une fraction irréductible, ce qui est **contradictoire**!

On conclut que $\sqrt{2} \notin \mathbb{Q}$.

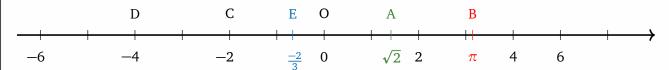
2. La droite réelle

Définition 2 : droite réelle

L'ensemble des nombres réels est généralement représenté par une droite graduée, d'où l'expression de droite réelle.

- ➤ On associe à chaque point de la droite réelle un nombre, son abscisse.
- ➤ Réciproquement, on associe à chaque nombre réel un point de la droite réelle.

Exemples



- ightharpoonup On associe au point A son abscisse, le nombre $\sqrt{2}$.
- \blacktriangleright On associe au nombre π le point B.

3. Intervalles de \mathbb{R}

Définition 3 : intervalle fermé

Soient a et b deux nombres réels tels que $a \le b$.

- ▶ L'intervalle [a ; b] est l'ensemble des nombres réels x tels que $a \le x \le b$. C'est un intervalle **fermé** car il contient les bornes a et b.
- ▶ Le réel b a est appelé **amplitude** ou **longueur** de l'intervalle [a; b].

Exemples

- ➤ L'intervalle [-3; 7] est l'ensemble des réels compris entre -3 et 7.
- ➤ Son amplitude est 7 (-3) = 7 + 3 = 10.
- ► Les bornes -3 et 7 appartiennent à l'intervalle [-3; 7]. On note $-3 \in [-3; 7]$ et $7 \in [-3; 7]$.
- \blacktriangleright On représente graphiquement l'intervalle [-3; 7] de la manière suivante.

Définition 4 : intervalle ouvert

Soient a et b deux nombres réels tels que $a \le b$.

L'intervalle]a; b[est l'ensemble des nombres réels x tels que a < x < b.

C'est un intervalle **ouvert** car il ne contient pas les bornes *a* et *b*.

Exemples

- ➤ L'intervalle] 3 ; 7[est l'ensemble des réels compris strictement entre —3 et 7.
- ➤ Son amplitude est 7 (-3) = 7 + 3 = 10.
- ► Les bornes -3 et 7 n'appartiennent pas à l'intervalle]-3; 7[. On note $-3 \notin [-3; 7]$ et $7 \notin [-3; 7]$.
- ➤ On représente graphiquement l'intervalle]-3; 7[de la manière suivante.

Définition 5 : intervalle non borné

Soient a et b deux nombres réels tels que $a \le b$.

- \blacktriangleright L'intervalle $]-\infty$; a] est l'ensemble des nombres réels x tels que $x \le a$.
- ▶ L'intervalle] $-\infty$; a[est l'ensemble des nombres réels x tels que x < a.
- \blacktriangleright L'intervalle [a; $+\infty$ [est l'ensemble des nombres réels x tels que $x \ge a$.
- \blacktriangleright L'intervalle a; $+\infty$ est l'ensemble des nombres réels x tels que x > a.

Exemples

- ▶ L'intervalle] $-\infty$; -3[est l'ensemble des réels x tels que x < -3.
- ➤ On a $-5 \in]-\infty$; -3[et $\sqrt{2} \notin]-\infty$; -3[.

Tableau récapitulatif

Ensemble des réels x tels que	Notation	Représentation graphique
$a \le x \le b$	[a; b]	$\begin{array}{ccc} & & \\ \hline & \\ a & & b \end{array}$
a < x < b]a; b[$\begin{array}{ccc} & & & \\ \hline & & \\ a & & b \end{array}$
$a \le x < b$	[a; b[$\begin{array}{ccc} & & & & \\ \hline & & & \\ a & & b & \end{array}$
$a < x \le b$]a; b]	$a \qquad b$
x > a]a; +∞[\xrightarrow{a}
$x \ge a$	$[a; +\infty[$	$ \underbrace{ \begin{bmatrix} \\ a \end{bmatrix}}$
x < b]-∞; b[$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$x \le b$]-∞; b]	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Définition 6 : réunion d'intervalles

Soient I et J deux intervalles de \mathbb{R} .

La réunion des intervalles I et J, notée I \cup J, est l'ensemble des nombres réels appartenant à I **ou** à J.

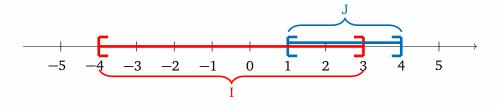
Définition 7: intersection d'intervalles

Soient I et J deux intervalles de \mathbb{R} .

L'intersection des intervalles I et J, notée I \cap J, est l'ensemble des nombres réels appartenant à I et à J.

Exemples

Déterminons la réunion ainsi que l'intersection des intervalles I = [-4; 3] et J = [1; 4]. Par représentation graphique, on a



Il s'ensuit que

$$I \cup J = [-4; 4]$$
 et $I \cap J = [1; 3]$.

4. Inégalités

Propriété 3 : addition et soustraction dans les inégalités

Soient a, b et c trois nombres réels.

$$ightharpoonup a < b \iff a+c < b+c$$

$$ightharpoonup a < b \iff a-c < b-c$$

Propriété 4 : multiplication et division dans les inégalités

Soient *a*, *b* et *c* trois nombres réels. Soit *k* un nombre réel non nul.

ightharpoonup 1^{er} cas : le réel k est strictement positif.

$$a < b \iff ka < kb$$
 l'ordre est conservé $a < b \iff \frac{a}{k} < \frac{b}{k}$ l'ordre est conservé

 \triangleright **2**^e **cas** : le réel *k* est strictement négatif.

$$a < b \iff ka > kb$$
 l'ordre n'est pas conservé $a < b \iff \frac{a}{k} > \frac{b}{k}$ l'ordre n'est pas conservé

Propriété 5 : addition membre à membre d'inégalités

On ne peut pas soustraire membre à membre deux inégalités.

Soient a, b, c et d quatre nombres réels.

Si
$$a < x < b$$
 et $c < y < d$, alors $a + c < x + y < b + d$.

Autrement dit, on peut ajouter membre à membre deux inégalités.



5. Distance entre deux nombres réels Définition 8 : valeur absolue

La valeur absolue d'un nombre réel x, notée |x| est la distance entre x et 0.

On peut définir la valeur absolue d'un nombre réel x de la manière suivante :

$$|x| = \begin{cases} x & \text{si } x \text{ est positif} \\ -x & \text{si } x \text{ est négatif} \end{cases}$$

Exemples

$$\blacktriangleright$$
 $|5| = 5$ car 5 est positif.

$$|-3| = 3$$
 car -3 est négatif.

$$|\pi - \sqrt{2}| = \pi - \sqrt{2} \operatorname{car} \pi - \sqrt{2} \operatorname{est positif.}$$

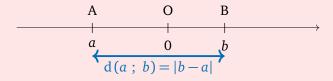
Propriété 6 : racine carrée d'un carré (admise)

Pour tout $x \in \mathbb{R}$, on a $\sqrt{x^2} = |x|$.

Définition 9 : distance entre deux nombres réels

Soient a et b deux nombres réels.

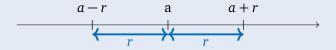
Le réel |b-a| représente la distance entres les nombres a, b. On note cette distance d(a;b). C'est la longueur AB, où a est l'abscisse du point A et b celle du point B.



Propriété 7 : condition $|x-a| \le r$

La condition $|x-a| \le r$ est équivalente à $d(x; a) \le r$.

Ainsi, l'ensemble des nombres réels x vérifiant la condition $|x-a| \le r$ est l'intervalle [a-r; a+r].



Méthode 1 : incontournable

Soient *x* et *y* deux nombres réels tels que : $d(x; -6) \le 4$ et $|y - 5| \le 3$

- **1** À quel intervalle appartient le réel x + y?
- **2** À quel intervalle appartient le réel x y?

Corrigé

On commence par déterminer d'abord un encadrement de x et de y.

La condition $d(x; -6) \le 4$ est équivalente à $-6 - 4 \le x \le -6 + 4$, ou encore $-10 \le x \le -2$.

Par ailleurs, la condition $|y-5| \le 3$ signifie que $-3 \le y-5 \le 3$, ou encore $2 \le y \le 8$.

• On additionne membre à membre :

$$-10 + 2 \le x + y \le -2 + 8$$
.

Par conséquent $x + y \in [-8; 6]$.

② On ne peut pas soustraire membre à membre. On détermine un encadrement de -y. On a $2 \le y \le 8$, donc $-8 \le -y \le -2$.

On peut à présent additionner membre à membre :

$$-10 + (-8) \le x + (-y) \le -2 + (-2)$$
.

Il s'ensuit que $x - y \in [-18; -4]$.

II Les exercices

1. Les bases du calcul

Exercice 1 Calculer avec des fractions

Calculer puis donner les résultats sous forme de fraction irréductible.

1.
$$A = \frac{1}{2} + \frac{2}{5} \times \frac{7}{8}$$

2.
$$B = \left(\frac{2}{6} + \frac{2}{5}\right) \times \frac{3}{4}$$

3.
$$C = \frac{3}{7} - \frac{1}{7} \times \frac{25}{15}$$

4.
$$D = \left(\frac{1}{4} - \frac{2}{3}\right) \times \left(\frac{3}{2} - \frac{3}{-4}\right)$$

5.
$$E = \frac{\frac{2}{3} + \frac{3}{4}}{1 - \frac{2}{3}}$$

6.
$$F = \frac{\frac{3}{4} - \frac{1}{4} \times \frac{3}{4} + \frac{5}{4}}{\frac{5}{8} - \frac{7}{6}}$$

Exercice 2 D'après lycée Louis-le-Grand/ lycée Henri-IV

Trouver le nombre caché à la place de ♠ et ♣.

1.
$$\frac{87}{60} = \frac{1}{2} + \frac{1}{4} + \frac{1}{3} + \frac{1}{6} + \frac{1}{4}$$

$$\frac{31}{17 + \frac{101}{8 - \frac{7}{4}}} = \frac{2015}{2014}$$

Exercice 3 Utiliser des puissances

Écrire chacun des nombres ci-dessous sous la forme a^n où a est un entier naturel et n un entier relatif.

1.
$$A = 5^3 \times 5^{-7}$$

2.
$$B = 2^4 \times 8^{-2}$$

3.
$$C = \frac{2^3}{4^3}$$

4.
$$D = \frac{7^3 \times (-49)^6}{7^{-12}}$$

$$5. \quad E = 0,25^{-5} \times 4^{-7}$$

6.
$$F = \frac{3^{-4} \times 9^2 \times 27^3}{3^6 \times \frac{1}{3^{-3}}}$$

Exercice 4 Écriture scientifique d'un nombre

Déterminer l'écriture scientifique de chacun des nombres suivants.

1.
$$A = \frac{-2.4 \times 10^7 \times 8 \times 10^{-9}}{3 \times 10^{-3}}$$

2.
$$B = 3 \times 10^{-4} \times 7 \times 10^{6} \times 1,25$$

3.
$$C = \frac{4 \times 10^{12} \times 0.5}{9 \times 10^{11}}$$

4.
$$D = \frac{7 \times 10^{-12} \times 4 \times 10^5}{2 \times 10^{-4}}$$

5.
$$E = 153 \times 10^{-4} + 32 \times 10^{-3} - 16 \times 10^{-5}$$

6.
$$F = \frac{0.08 \times 10 - 14 \times 0.0025}{160 \times 10^5}$$

2. Géométrie

Exercice 5 D'après un ancien sujet de Brevet

ABC est un triangle tel que AB = 4.2 cm; AC = 5.6 cm et BC = 7 cm.

- 1. Démontrer que ABC est un triangle rectangle.
- 2. Calculer son aire.
- 3. On sait que si R est le rayon du cercle circonscrit à un triangle dont les côtés ont pour longueurs a, b, c données en cm, l'aire de ce triangle est égale à $\frac{abc}{4R}$.
 - (a) En utilisant cette formule, calculer le rayon du cercle circonscrit à ABC.
 - (b) Pouvait-on prévoir ce résultat? Justifier la réponse.

Exercice 6 Problème

Préliminaire

1. D'après la figure ci-contre :

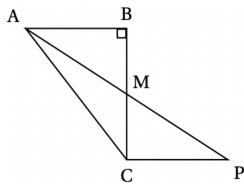
Tracer ABCP en respectant les données suivantes :

$$AB = 6 \text{ cm}; \quad BC = 8 \text{ cm}$$

$$BM = 3 \text{ cm} \quad (CP)//(AB)$$

2. Mesurer les angles BAM et MAC.
Pourquoi ces mesures ne permettent-elles pas d'affirmer

Pourquoi ces mesures ne permettent-elles pas d'affirmer que (AM) est la bissectrice de \widehat{BAC} ?



Les parties A et B peuvent être traitées indépendamment l'une de l'autre.

Partie A

- 1. En considérant le triangle ABL :
 - (a) Calculer AC.
 - (b) Calculer BAC et SAM le plus précisément possible.

 Expliquer pourquoi les valeurs obtenues ne permettent pas d'affirmer que (AM) est la bissectrice de BAC
- 2. En considérant les triangles ABM et MCP, calculer CP.
- 3. Quelle est la nature de ACP? Que peut-on en déduire pour \widehat{MAC} et \widehat{CPM} ?
- **4.** Démontrer que $\widehat{MAC} = \widehat{BAM}$ et donc que (AM) est bien la bissectrice de \widehat{BAC} .

Partie B

1. (AM) est, d'après la partie A la bissectrice de \widehat{BAC} .

Sur la figure tracée à la première question du préliminaire :

- \triangleright tracer la bissectrice, d, de \widehat{ABM} ;
- ➤ nommer O le point d'intersection de la droite *d* et de la droite (AM);
- ➤ tracer la hauteur issue de O du triangle AOB et la hauteur issue de O du triangle BOM. Ces hauteurs sont des rayons du cercle inscrit dans le triangle BAC.
- ➤ Tracer ce cercle.
- **2.** (a) Calculer l'aire du triangle ABM.
 - (b) Exprimer l'aire du triangle AOB et l'aire du triangle BOM en fonction du rayon r du cercle inscrit dans le triangle BAC.
 - (c) Trouver une relation entre ces trois aires. En déduire le rayon r.

3. Ensembles de nombres

Exercice 7 Utilisation de symboles mathématiques

Compléter avec les symboles : \in (appartient), \notin (n'appartient pas), \subset (est inclus dans) ou \notin (n'est pas inclus dans).

1.
$$\frac{5}{3}\cdots \mathbb{D}$$

$$4. \quad \frac{20}{5} \cdots \mathbb{N}$$

7.
$$\frac{1}{2^{-3}}\cdots \mathbb{N}$$

8.
$$2^{-2} \cdots \mathbb{D}$$

3.
$$3\sqrt{100}\cdots\mathbb{N}$$

9.
$$\left(\frac{-1}{3}\right)^0 \cdots \mathbb{Z}$$

Exercice 8

Pour chaque cas, trouver si possible, un nombre x qui vérifie les conditions énoncées.

1.
$$x \in \mathbb{Q}$$
 et $x \notin \mathbb{Z}$

$$3. \quad x \notin \mathbb{Q} \text{ et } x \in \mathbb{N}$$

5.
$$x \in \mathbb{Q}$$
 et $x \notin \mathbb{N}$

2.
$$x \in \mathbb{Q}$$
 et $x \in \mathbb{Z}$

4.
$$x \in \mathbb{D}$$
 et $x \in \mathbb{N}$

6.
$$x \in \mathbb{R}$$
 et $x \notin \mathbb{Q}$

Exercice 9 Démonstration

Démontrer que le carré d'un nombre impair est impair.

Exercice 10

Compléter le tableau suivant.

Intervalle	Inégalité(s)	Langage usuel	Schéma
$x \in [-1; 10]$			
		x strictement inférieur à −2	
	$x \ge 3$		
$x \in]-\infty ; 0]$			
	$-6 < x \le -1$		
			-5

Exercice 11

Soit x un réel tel que $x \in]-\infty$; 5].

- 1. À quel intervalle appartient le réel 2x 3?
- **2.** À quel intervalle appartient le réel -3x + 1?

Exercice 12

Soient x et y deux nombres réels tels que 2 < x < 3 et -5 < y < -4.

- 1. À quel intervalle appartient le réel x + y?
- **2.** À quel intervalle appartient le réel x y?
- 3. À quel intervalle appartient le réel -2x + 3y?

Exercice 13 Inéquation à paramètre

Soit *m* un nombre réel strictement positif.

- **1.** Résoudre dans \mathbb{R} l'inéquation suivante d'inconnue $x:2mx+3\geq m$.
- **2.** À quel intervalle doit appartenir m pour que 5 soit solution de l'inéquation ci-dessus?

Exercice 14 Résolution d'inéquations

Résoudre dans $\mathbb R$ les inéquations suivantes.

1.
$$|x| \le 5$$

3.
$$|x+1| \le 3$$

2.
$$|x-10| \le 4$$

Exercice 15

À quel intervalle appartient le réel x sachant que $|x-10| \le 6$.

Exercice 16

Soient I l'intervalle tel que $|x+1| \le 8$ et J l'intervalle tel que $|x-3| \le 10$. Déterminer I \cup J et I \cap J.

Exercice 17

Compléter le tableau suivant.

I	J	I∩J	Ι∪J
$x \in [-2; 8]$	$ x+1 \le 6$		
$ x+2 \le 4$	$ x-1 \le 2$		
$x \in [-6; 18]$	$d(x; -10) \le 4$		

Exercice 18

Soit x un nombre réel vérifiant $|x - 10| \le 3$.

- 1. À quel intervalle appartient le réel 4x 1?
- **2.** À quel intervalle appartient le réel 6-3x?

Exercice 19 Raisonnement par l'absurde

Soient x un nombre rationnel et y un nombre irrationnel.

Montrer en utilisant un raisonnement par l'absurde que x + y est un nombre irrationnel.